Compare Irrational Numbers

Compare Irrational Numbers

We have already discussed Rational and Irrational Numbers, so now let us take a look on how to compare irrational numbers.

Irrational numbers include numbers which are not perfect square roots or perfect cube roots and can’t be found out exactly.

compare irrational numbers

For Example \sqrt{2}\sqrt{3} ,\sqrt{5} ,\sqrt{6}\sqrt{7}\sqrt{8}\sqrt{10}  are not perfect square roots.

Similarly \sqrt[{3}]{2}\sqrt[{3}]{3}\sqrt[{3}]{4}\sqrt[{3}]{5}\sqrt[{3}]{6}\sqrt[{3}]{7}\sqrt[{3}]{9}  are not perfect cube roots, and hence irrational.

  1. To compare two irrational numbers which are of the first form , say \sqrt{3} and \sqrt{5}  we find the square of both numbers and compare them

For Example:(\sqrt{3}) ^{2} = \sqrt{3}  x \sqrt{3} = 3,


(\sqrt{5}) ^{2} = \sqrt{5} x \sqrt{5} = 5 and since 3 < 5 hence \sqrt{3} < \sqrt{5}


  1. To compare two irrational numbers which are of the second form, say  \sqrt[3]{2}  and  \sqrt[3]{3} we find the cube of both numbers and compare them.

For Example: (\sqrt[3]{2}) ^{3} = \sqrt[3]{2}  x  \sqrt[3]{2} x \sqrt[3]{2} = 2,

(\sqrt[3]{3}) ^{3} = \sqrt[3]{3} x \sqrt[3]{3} x \sqrt[3]{3} = 3 and since 2 < 3 hence  \sqrt[3]{2} < \sqrt[3]{3}.


compare irrational numbers

For Example Consider \sqrt[5]{15} and  \sqrt[5]{21}

(\sqrt[5]{15}) ^{5} = \sqrt[5]{15} x \sqrt[5]{15} x \sqrt[5]{15} x \sqrt[5]{15} x \sqrt[5]{15} = 15,

(\sqrt[5]{21}) ^{5} = \sqrt[5]{21} x \sqrt[5]{21} x \sqrt[5]{21} x \sqrt[5]{21} x \sqrt[5]{21} = 21 and 15 < 21 hence\sqrt[5]{15} <  \sqrt[5]{21}.

Check Point

  1. Which of the two numbers is greater? \sqrt{12} or \sqrt{17}
  1. Which of the two numbers is smaller? \sqrt{91} or \sqrt{97}
  1. Insert appropriate symbol > or < between the given numbers: \sqrt[{3}]{73}\sqrt[{3}]{82}
  1. Arrange the following numbers in ascending order of their magnitudes:

\sqrt[{4}]{12} , \sqrt[{4}]{35} , \sqrt[{4}]{7}

  1. Arrange the following numbers in descending order of their magnitudes:

\sqrt[{3}]{29} , \sqrt[{3}]{34} , \sqrt[{3}]{17}

Answer key
  1. \sqrt{17}
  2. \sqrt{91}
  3. \sqrt[3]{73} < \sqrt[3]{82}.
  4. \sqrt[4]{7} < \sqrt[4]{12} < \sqrt[4]{35}.
  5. \sqrt[3]{34} > \sqrt[3]{29} > \sqrt[3]{17}.


Personalized Online Tutoring

eTutorWorld offers affordable one-on-one live tutoring over the web for Grades 2-12, Test Prep help for Standardized tests like SCAT, CogAT, SSAT, SAT, ACT, ISEE and AP. You may schedule online tutoring lessons at your personal scheduled times, all with a Money-Back Guarantee. The first one-on-one online tutoring lesson is always FREE, no purchase obligation, no credit card required.

For answers/solutions to any question or to learn concepts, take a FREE Demo Session.

No credit card required, no obligation to purchase.
Just schedule a FREE Sessions to meet a tutor and get help on any topic you want!

Pricing for Personalized Online Tutoring

Tutoring Package Validity Grade (1-12), College
5 sessions 21 Days $114
1 session 21 Days $24
10 sessions 2 months $219
15 sessions 3 months $319
20 sessions 3 months $409
50 sessions 6 months $949
100 sessions 10 months $1849


©2021 eTutorWorld           Terms of use            Privacy Policy            Site by Little Red Bird          

©2021 eTutorWorld
Terms of use
Privacy Policy
Site by Little Red Bird



♦ Coupon JAN10 for a 10% Discount on all Tutoring Packs

♦ Coupon TEST20 for a 20% Discount on all SCAT, SSAT, CogAT & Enrichment Online Practice Packs

You have Successfully Subscribed!