# Solve System of Linear Equations with Elimination and Substitution

Let’s see this with the help of an example –

3*x* – 4*y* = 11 …Equation (1)

-3*x* + 2*y* = -7 …Equation (2)

When we add the two equations, *x*-terms will be eliminated. This happens because the coefficients of the *x*-terms, 3 and -3, are opposites of each other.

So, adding we get:

Dividing both sides by -2, we get, *y* = -2

Now put *y* = -2 back in equation (1) or equation (2) to get the value of *x*. Let us put *y* = -2 in equation (1):

3*x* – 4(-2) = 11 3*x* + 8 = 11

3*x* = 11 – 8 3*x* = 3

*x*** = 1**

**Check the solution: **Put *x* = 1 and *y* = -2 in the given equations to check the answer.

Left Hand Side (L.H.S) of the equation 3*x* – 4*y* = 11:

3(1) – 4(-2) = 3 + 8 = 11, which is the same as right Hand Side (R.H.S) of the equation.

Since L.H.S = R.H.S, so the values are correct.

Similarly, L.H.S of the equation -3*x* + 2*y* = -7:

-3(1) + 2(-2) = -3 – 4 = -7, which is the same as R.H.S of the equation.

Since L.H.S = R.H.S, so the values are correct.

*Example*: Solve the given system of equations by elimination method –

5*x* – 4*y* = 9 …Equation (1)

*x* – 2*y *= -3 …Equation (2)

Here we can either multiply equation (2) by 5 so that the coefficient of *x* in equation (2) is also 5 and then we can subtract both the equations to get the value of *y*, or we can multiply equation (2) by ‘-2’ and then add the two equations to get the value of *x*.

Here we multiply equation (2) by -2, and then add the equations –

5*x* – 4*y* = 9 …Equation (1) ——————— 5*x* – 4*y* = 9 …Equation (1)

*x* – 2*y *= -3 …Equation (2) ——————— -2*x* + 4*y *= 6 …Equation (2)

Adding the equations we get, 5x – 2x = 9 + 6

3*x* = 15

Dividing by 3 we get, *x* = 5

Put this value of *x* = 5 in any of the two equations to get the value of *y*, putting *x* = 5 in equation (2) we get:

5 – 2*y* = -3

2*y* = 5 + 3

2*y* = 8 implies *y* = 4

**Check the solution:**

L.H.S of the equation 5*x* – 4*y* = 9:

5(5) – 4(4) = 25 – 16 = 9, which is equal to the R.H.S of the equation.

L.H.S of the equation *x* – 2*y *= -3:

5 – 2(4) = 5 – 8 = -3, which is equal to the R.H.S of the equation.

*Example*: Solve the following equations for *x* and *y*:

2*x* + *y* = 3 …Equation (1)

-5*x* + *y* = -4 …Equation (2)

** Step 1**: From equation (1),

*y*= 3 – 2

*x*

** Step 2 and 3**: Put

*y*= 3 – 2

*x*in equation (2)

*, –*5

*x*+ (3 – 2

*x*) = -4

-5x – 2x = -4 – 3

-7x = -7 ⇒ *x* = 1

** Step 4**: Put

*x*= 1 in equation (1),

*y*= 3 – 2

*x*

*y = *3 – 2(1)

*y *= 3 – 2

** y = 1**

** Step 5**:

**Check the solution:**Put

*x*= 1 and

*y*= 1 in any of the given equations to check the answer.

Left Hand Side (L.H.S) of the equation 2*x* + *y* = 3:

2(1) + 1 = 2 + 1 = 3, which is equal to the R.H.S of the equation.

Since L.H.S = R.H.S so, the values are correct.

L.H.S of -5*x* + *y* = -4:

-5(1) + 1 = -5 + 1 = -4, which is equal to the R.H.S of the equation.

Since L.H.S = R.H.S so, the values are correct.

**CHECK POINT**

- Solve by elimination method:

*x* + *y* = 1

*x* – *y* = 3

- Solve by substitution method:

* x* + 2*y* = 2

-4*x* + 3*y* = 25

- Solve by elimination method:

2*x* + 5*y* = -4

3*x* – *y* = 11

- Solve by substitution method:

5*x* + 2*y* = 0

*x* – 3*y* = 0

- Solve by elimination method:

*x* = 4*y *– 2

*x* = 6*y* + 8

##### Answer key

- (2, -1)
- (-4, 3)
- (3, -2)
- (0, 0)
- (-22, -5)

+1-269-763-4602

+1-269-763-5024

Quick Links

Follow Us

**Give Your Child The eTutorWorld Advantage**

Research has proven that personal online tutoring not just cements school learning, it helps build student confidence. eTutorWorld provides the best K-12 Online Tutoring Services so you can learn from the comfort and safety of your home at an affordable cost.

Be it an exam, class test or a quiz, eTutorWorld’s Math, Science and English tutors are responsible for your academic progress. Meet your personal coach at your convenient day and time to get help for Grade 3-12 Math, Science and English subjects and AP, SAT, SSAT and SCAT Test Prep help and test practice. All our tutors are graduates and bring with them years of teaching experience to the tutoring lessons.

Our ‘*Learning by Design*’ methodology makes sure that each student is at the center of the teaching-learning process. All tutoring sessions start with a question to the student ‘*What do you want to learn today?*’ Hence, tutors diagnose your skills and recognize your requirements before the actual tutoring happens. Post every tutoring session, an individualized worksheet is emailed to the student to assimilate learned concepts. Regular formative assessments are used to evaluate a student’s understanding of the subject.

The state of the art technology used is stable, user friendly and safe. All you need is a computer or a tablet and an internet connection. The easy-to-use web conferencing software requires a one time download, using which the student can talk and chat to the tutor, annotate on an interactive shared whiteboard or even share documents, assignments or worksheets.

All tutoring sessions are recorded and made available for a month so you can review concepts taught.

Email or call our support team with any issues or questions – we are here for you 24X7.

Also, download free printable math and science worksheets in pdf format and solve SCAT and SSAT Practice Tests online. Sign up for a Free Trial Lesson Today!

Thousands have taken the eTutorWorld Advantage – what are you waiting for?

© 2019 eTutorWorld - Online Tutoring and Test Prep | All rights reserved