Select Page

Limits And Continuity

Calculus Worksheets

Home >> Online Math Tutoring >> online calculus tutoring >> Limits And Continuity

Have you ever driven a motorbike or a car?

What do we observe when we press the accelerator for any one of them?

The motorbike/car attains its maximum speed after some time int`erval say 10-15 seconds.

Now, the speed might increase from 0 km/hr initially i.e. at time 0 seconds to 100/150 km/hr after time 10-15 seconds. Now, if we are interested in finding the approximate speed of the motorbike/car at the time say 8 seconds, then we want an expected or estimated value of the speed at a particular time instant.

Here, comes the role of limits.

Similarly, if we are not able to find or determine the actual value of a function say f(x) at any given point say x = a, we try to estimate i.e. find its expected value at x = a. This is where the concept of limit comes in picture.


Limit of a Function

Let f(x) be function and x = a be any point in its domain then the limit of f(x) at x = a is denoted by\lim_{x\to a }  f(x) . It is the expected or estimated value of f(x) as x approaches to a.

  • Left Hand limit: The left hand limit of f(x) at x = a is denoted by \lim_{x\to a^- } f(x). It is the expected or estimated value of f(x) at x = a when the values of f(x) near to and to the left of a are given.
  • Right Hand limit: The right hand limit of f(x) at x = a is denoted by \lim_{x\to a^+}f(x)It is the expected or estimated value of f(x) at xa when the values of f(x) near to and to the right of a are given
  • Existence of limit: If the left hand limit & right hand limit both coincide i.e. are equal then the limit exists & the common value is called the limit of the function.

If  \lim_{x\rightarrow a^-}  f(x) = \lim_{x\rightarrow a^+}  f(x) = l.(say) 

Then, \lim_{x\rightarrow a}  f(x) exists & \lim_{x\rightarrow a}  f(x) = l.

We read it as the limit of f(x) as x approaches to a is equal to l.



 Standard Limits

  1.  Limit of polynomial function, f(x) = a0 + a1x + a2x2 + a3x3 + ….+ anxn


\lim_{x\rightarrow a} f(x)= f(a)


\lim_{x\rightarrow a} (a0 + a1x + a2x2 + a3x3 + …. + anxn)


= (a0 + a1a + a2a2 + a3a3 + …. + anan)


  1. Limit of Rational function \lim_{x\rightarrow a} \left ( \frac{f(x)}{g(x)} \right ) = \frac{\left ( \lim_{x\rightarrow a} f(x) \right )}{\left ( \lim_{x\rightarrow a} g(x) \right )} = \frac{f(a)}{g(a)} provided g(x)\neq0.
  2. \lim_{x\rightarrow a} \left ( \frac{x^n-a^n}{x-a} \right ) =na^{n-1}




Algebra of limits of functions


If f(x) and g(x) be any two functions such that  \lim_{x\rightarrow a} f(x) & \lim_{x\rightarrow a} g(x) both exist.


  1. \lim_{x\rightarrow a} [f(x)+g(x)] = \lim_{x\rightarrow a}  f(x) + \lim_{x\rightarrow a}  g(x)
  2. \lim_{x\rightarrow a} [f(x) – g(x)] = \lim_{x\rightarrow a}  f(x) – \lim_{x\rightarrow a} g(x)
  3. \lim_{x\rightarrow a} [f(x) g(x)] = \lim_{x\rightarrow a}  f(x)\lim_{x\rightarrow a} g(x)
  4. \lim_{x\rightarrow a} \left [ \frac{f(x)}{g(x)} \right ] =  \frac{\lim_{x\to a}f(x) }{\lim_{x\to a}g(x) } where g(x) \neq 0 .


 Now let’s consider some examples on limits and continuity.


Example 1: Find{\lim_{x\to1}f(x) where f(x) = x11 + 3x.


{\lim_{x\to1}f(x) = {\lim_{x\to1}(x11 + 3x) = (1)11 + 3(1) = 4


 Example 2: Find {\lim_{x\to2}f(x) where f(x) = \frac{x+1}{x^2+2x+3} .


{\lim_{x\to2}f(x) ={\lim_{x\to2} \left ( \frac{x+1}{x^2+2x+3} \right ) = \frac{\lim_{x\to2}(x+1) }{\lim_{x\to2} (x^2+2x+3)}


\frac{(2+1) }{(2)^2+2(2)+3} = \frac{3}{11}


Example 3: Find {\lim_{x\to1} f(x) where f(x) = \frac{x^{10}-1}{x-1} .


{\lim_{x\to1} f(x) = {\lim_{x\to1}\left ( \frac{x^{10}-1^{10}}{x-1} \right ) = 10(1)^{10-1} = 10 using \lim_{x\rightarrow a} \left ( \frac{x^n-a^n}{x-a} \right ) = na^{n-1}




A function f(xis called continuous at a point x = a in its domain if\lim_{x\rightarrow a}  f(x)f(a), which can also be stated as


\lim_{x\to a^+}f(x) =\lim_{x\to a^-}f(x) = f(a).


Hence, if the left hand limit & right hand limit both exist, and are both equal to the value of f(xat x = a, then the function f(xis called continuous at a point x = a.


Example 4: Check the continuity of the function f(x) = x11 + 3x at x = 1.


{\lim_{x\to1} f(x) = {\lim_{x\to1} (x^{11}+3x)= (1)11 + 3(1) = 4


f(1) = (1)11 + 3(1) = 4


Therefore, {\lim_{x\to1} f(x) = f(1). 


Hence, the function f(x) = x11 + 3x is continuous at x = 1.


 Example 5: Find the value of a if f(x) = 2x + a is continuous at x = 1 and f(1) = 5.


Since f(x) = 2x + a is continuous at x = 1,


{\lim_{x\to1} f(x)=f(1)








Check Point

  1. Find \lim_{x\to0} f(x) when f(x)  x2 + 2x + 3.
  2. Find {\lim_{x\to1} f(x) when f(x) = \frac{x-1}{x^2+7x+5} . 
  3. Find {\lim_{x\to2} f(x) when f(x) = \frac{x^4-16}{x-2}
  4. Check the continuity of the function f(x) = 3x2 + 5x at x = 2.
  5. Find the value of a if f(x) = 3x2 + a is continuous at x = 2 and f(2) = 17.
Answer Key
  1. \lim_{x\to0}  f(x) = 3
  2. {\lim_{x\to1} f(x) = 0
  3. {\lim_{x\to2} f(x) = 32
  4. f(x) = 3x2 + 5x is continuous at x = 2.
  5. a = 5

eTutorWorld Understands Math Tutoring | Online Math Worksheets are Important Tools

Understanding graphs, charts, and opinion polls in a newspaper, for calculating house and car payments, and for choosing a long-distance telephone service are impossible without strong math skills …and the only way to develop strong math skills is by constant practice.

‘Practice makes a man perfect’ holds true for no other field better than for math. A middle or high school student must set aside a minimum of an hour for math every day. Other than textbooks, worksheets help you revise and understand concepts better.

Our expert tutors prepare online maths worksheets that are age and grade-appropriate. Grade-wise math worksheets for Elementary Math, Arithmetic, Pre-Algebra, Algebra, Geometry, Trigonometry, Statistics, Pre-Calculus and Calculus can be solved to improve math skills, to get ahead or to even catch up.

You may download these FREE online math worksheets in the PDF format, and then print and email us their solutions for a free evaluation and analysis by eTutorworld’smath expert tutors.

You may solve these worksheets by yourself or with your peers while studying together.

The Answer Key at the end of each worksheet allows for a self-evaluation.

Personalized Online Tutoring

eTutorWorld offers affordable one-on-one live tutoring over the web for Grades K-12, Test Prep help for Standardized tests like SCAT, CogAT, MAP, SSAT, SAT, ACT, ISEE and AP. You may schedule online tutoring lessons at your personal scheduled times, all with a Money-Back Guarantee. The first one-on-one online tutoring lesson is always FREE, no purchase obligation, no credit card required.

For answers/solutions to any question or to learn concepts, take a FREE TRIAL Session.

No credit card required, no obligation to purchase.
Just schedule a FREE Sessions to meet a tutor and get help on any topic you want!

Pricing for Online Tutoring

Tutoring PackageValidityGrade (1-12), College
5 sessions1 Month$129
1 session1 Month$26
10 sessions3 months$249
15 sessions3 months$369
20 sessions4 months$469
50 sessions6 months$1099
100 sessions12 months$2099