Select Page

Exponential and Logarithmic Series

Have you ever noticed the use of the word exponential in our daily life?

 

  • It is used to express something which is rising or increasing at a steady and a usual rapid rate or something which increases quickly by large amounts.

Examples:

(i)  Prices have increased exponentially i.e. at an exponential rate.

(ii) The budget is increasing at an exponential rate.

(iii) We all want to progress exponentially and achieve success in our lives.

 

  • Something is said to increase or decrease exponentially if its rate of change must be expressed using exponents.
  • A graph of such a rate would appear not as a straight line, but as a curve that continually becomes steeper or shallower.
  • In Math, it refers to a Mathematical (function, curve, series, or equation) containing, or involving one or more numbers or quantities raised to an exponent.

 

So, here we try to identify what does Exponential series mean in mathematics.

Sequence

A sequence is a list or arrangement of numbers in a definite order written according to some rule or pattern.

 

Series

If the n terms of the sequence are a1a2a3a4, ……., an then the expression a1 + a2 + a3 + a4 + ……. + an is called the series associated with the given sequence.

 

Exponential Series          

1. A series of the form

is called the Exponential series, x ∈ RHere ex is called the exponential function.

Replace x by –x in the above series given by (1), we obtain

e^{-x} = 1 + \frac{(-x)}{1!}+\frac{(-x)^2}{2!}+\frac{(-x)^3}{3!}+\frac{(-x)^4}{4!}+..............+\frac{(-x)^r}{r!}+......∞ = 

2. e^{-x} = 1 –  \frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+..............+\frac{(-x)^r}{r!}+......∞ = 

 

On adding (1) and (2) we have

e^x +  e^{-x} = 2

3.     \frac{e^x +e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!}+......... ∞ 

 

Subtracting (2) from (1),

e^x - e^{-x} = 2

4.  \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!}+\frac{x^5}{5!}+.......∞ = 

 

Particular cases:

Put x = 1 in (1) and (2), we have

5. e^1 = 1 + \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+........ ∞ = 

Here e is an irrational number such that 2 < e < 3.

The value of e = 2.7182818284

6. e^{-1}=1+\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+....... ∞ = 

 

Put x = 1 in (3) and (4) we have

7.  \frac{e+e^{-1}}{2}=1+\frac{1}{2!}+\frac{1}{4!}+........ ∞ = 

8. \frac{e-e^{-1}}{2}=1+\frac{1}{3!}+\frac{1}{5!}+........ ∞ = 

 

Logarithmic Series

  1. The logarithmic series is defined for |x| < 1 and is given by

log_{e}(1+x) = x – \frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+.......... ∞

 

Replace x by –x in the above series, we obtain

  1. log_{e}(1 – x) = – x – \frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-.......... ∞ or

log_{e}(1-x) = x +\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+.......... ∞

 

On adding (1) and (2) we have

log_{e}(1+x) + log_{e}(1-x) = log_{e}(1-x^2) = -2 , |x|< 1

 

Subtracting (2) from (1), we have

  1. log_{e}(1+x)- log_{e}(1-x) = log_{e} \left ( \frac{1+x}{1-x} \right ) = 2

 

Put x = 1 in (1), we have

  1. log_{e}2=1 –\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.......... ∞ =\frac{1}{1.2}+\frac{1}{3.4}-\frac{1}{5.6}+..........

 

Note: loge(1 + x) is defined for = 1.

 

Examples

Now let’s consider some examples on exponential and logarithmic series.

Example 1: Find the value of 1+ \frac{5}{1!}+\frac{5^2}{2!}+\frac{5^3}{3!}+\frac{5^4}{4!}+................∞ .

Since,  e^x = 1 + \frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+................+\frac{x^r}{r!}+.......∞.

Hence, put x = 5 in above expression, we have

e^5 = 1 + \frac{5}{1!}+\frac{5^2}{2!}+\frac{5^3}{3!}+\frac{5^4}{4!}+................

 

Example 2: Find the value of 1 – \frac{(2.5)}{1!}+\frac{(2.5)^{2}}{2!}-\frac{(2.5)^{3}}{3!}+\frac{(2.5)^{4}}{4!}-................ ∞

Since, e^{-x} = 1 – \frac{x}{1!}+\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}+..................... ∞

Hence, put x = 2.5 in above expression, we have

e^{(-2.5)} = e^{(-\frac{5}{2})} = 1 – \frac{(2.5)}{1!}+\frac{(2.5)^{2}}{2!}-\frac{(2.5)^{3}}{3!}+\frac{(2.5)^{4}}{4!}-................

 

Example 3: Find the value of \frac{2}{1!}+\frac{4}{3!}+\frac{6}{5!}+\frac{8}{7!}+............∞ .

\frac{2}{1!}+\frac{4}{3!}+\frac{6}{5!}+\frac{8}{7!}+............∞ = \frac{(1+1)}{1!}+\frac{(1+3)}{3!}+\frac{(1+5)}{5!}+\frac{(1+7)}{7!}+............ ∞

=

=\frac{e-e^{-1}}{2}+\frac{e+e^{-1}}{2}=e  

 

Example 4: Find the value of (0.5) – \frac{(0.5)^2}{2}+\frac{(0.5)^3}{2}\frac{(0.5)^4}{4}+……….∞

Since, log_{e}(1+x) = x – \frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+..........

Hence, put = 0.5 we have

log_{e}(1+0.5) = (0.5) – \frac{(0.5)^2}{2}+\frac{(0.5)^3}{3}-\frac{(0.5)^4}{4}+..........

log\left ( 1+\frac{1}{2} \right ) = log\left (\frac{3}{2} \right ) = (0.5) – \frac{(0.5)^2}{2}+\frac{(0.5)^3}{3}-\frac{(0.5)^4}{4}+..........

 

Example 5: Find the value of \frac{1}{3}+\frac{1}{2.3^2}+\frac{1}{3.3^3}+\frac{1}{4.3^4}+.......∞.

Since, log_{e}(1-x) = -x – \frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-.........

log_{e}(1-x) = x + \frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+......... ∞

Hence, put x= \frac{1}{3} we have

 

Check Point

  1. Find the value of 1+ \frac{3}{1!}++ \frac{3^2}{2!}+ \frac{3^3}{3!}+ \frac{3^4}{4!}+...............
  2. Find the value of 1+ \frac{(0.5)}{1!}+ \frac{(0.5)^2}{2!}+ \frac{(0.5)^3}{3!}+ \frac{(0.5)^4}{4!}+...............
  3. Find the value of \frac{4}{1!}+\frac{4^3}{3!}+\frac{4^5}{5!}+............. ∞
  4. Find the value of  -(0.5)-\frac{(0.5)^2}{2}-\frac{(0.5)^3}{3}-\frac{(0.5)^4}{4}-............
  5. Find the value of \frac{1}{n}-\frac{1}{2n^2}+\frac{1}{3n^3}-\frac{1}{4n^4}+............ ∞

Answer Key

Give Your Child The eTutorWorld Advantage

Research has proven that personal online tutoring not just cements school learning, it helps build student confidence. eTutorWorld provides the best K-12 Online Tutoring Services so you can learn from the comfort and safety of your home at an affordable cost.

Be it an exam, class test or a quiz, eTutorWorld’s Math, Science and English tutors are responsible for your academic progress. Meet your personal coach at your convenient day and time to get help for Grade 3-12 Math, Science and English subjects and AP, SAT, SSAT and SCAT Test Prep help and test practice. All our tutors are graduates and bring with them years of teaching experience to the tutoring lessons.

Our ‘Learning by Design’ methodology makes sure that each student is at the center of the teaching-learning process. All tutoring sessions start with a question to the student ‘What do you want to learn today?’ Hence, tutors diagnose your skills and recognize your requirements before the actual tutoring happens. Post every tutoring session, an individualized worksheet is emailed to the student to assimilate learned concepts. Regular formative assessments are used to evaluate a student’s understanding of the subject.

The state of the art technology used is stable, user friendly and safe. All you need is a computer or a tablet and an internet connection. The easy-to-use web conferencing software requires a one time download, using which the student can talk and chat to the tutor, annotate on an interactive shared whiteboard or even share documents, assignments or worksheets.

All tutoring sessions are recorded and made available for a month so you can review concepts taught.

Email or call our support team with any issues or questions – we are here for you 24X7.

Also, download free printable math and science worksheets in pdf format and solve SCAT and SSAT Practice Tests online. Sign up for a Free Trial Lesson Today!

Thousands have taken the eTutorWorld Advantage – what are you waiting for?

© 2019 eTutorWorld - Online Tutoring and Test Prep | All rights reserved

10% Discount on all Tutoring & Worksheet Packs

use coupon HALO10

You have Successfully Subscribed!