(628)-272-0788 info@etutorworld.com
Select Page

Exponential and Logarithmic Series

Have you ever noticed the use of the word exponential in our daily life?

 

  • It is used to express something which is rising or increasing at a steady and a usual rapid rate or something which increases quickly by large amounts.

Examples:

(i)  Prices have increased exponentially i.e. at an exponential rate.

(ii) The budget is increasing at an exponential rate.

(iii) We all want to progress exponentially and achieve success in our lives.

 

  • Something is said to increase or decrease exponentially if its rate of change must be expressed using exponents.
  • A graph of such a rate would appear not as a straight line, but as a curve that continually becomes steeper or shallower.
  • In Math, it refers to a Mathematical (function, curve, series, or equation) containing, or involving one or more numbers or quantities raised to an exponent.

 

So, here we try to identify what does Exponential series mean in mathematics.

Sequence

A sequence is a list or arrangement of numbers in a definite order written according to some rule or pattern.

 

Series

If the n terms of the sequence are a1a2a3a4, ……., an then the expression a1 + a2 + a3 + a4 + ……. + an is called the series associated with the given sequence.

 

Exponential Series          

1. A series of the form

is called the Exponential series, x ∈ RHere ex is called the exponential function.

Replace x by –x in the above series given by (1), we obtain

e^{-x} = 1 + \frac{(-x)}{1!}+\frac{(-x)^2}{2!}+\frac{(-x)^3}{3!}+\frac{(-x)^4}{4!}+..............+\frac{(-x)^r}{r!}+......∞ = 

2. e^{-x} = 1 –  \frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+..............+\frac{(-x)^r}{r!}+......∞ = 

 

On adding (1) and (2) we have

e^x +  e^{-x} = 2

3.     \frac{e^x +e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!}+......... ∞ 

 

Subtracting (2) from (1),

e^x - e^{-x} = 2

4.  \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!}+\frac{x^5}{5!}+.......∞ = 

 

Particular cases:

Put x = 1 in (1) and (2), we have

5. e^1 = 1 + \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+........ ∞ = 

Here e is an irrational number such that 2 < e < 3.

The value of e = 2.7182818284

6. e^{-1}=1+\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+....... ∞ = 

 

Put x = 1 in (3) and (4) we have

7.  \frac{e+e^{-1}}{2}=1+\frac{1}{2!}+\frac{1}{4!}+........ ∞ = 

8. \frac{e-e^{-1}}{2}=1+\frac{1}{3!}+\frac{1}{5!}+........ ∞ = 

 

Logarithmic Series

  1. The logarithmic series is defined for |x| < 1 and is given by

log_{e}(1+x) = x – \frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+.......... ∞

 

Replace x by –x in the above series, we obtain

  1. log_{e}(1 – x) = – x – \frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-.......... ∞ or

log_{e}(1-x) = x +\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+.......... ∞

 

On adding (1) and (2) we have

log_{e}(1+x) + log_{e}(1-x) = log_{e}(1-x^2) = -2 , |x|< 1

 

Subtracting (2) from (1), we have

  1. log_{e}(1+x)- log_{e}(1-x) = log_{e} \left ( \frac{1+x}{1-x} \right ) = 2

 

Put x = 1 in (1), we have

  1. log_{e}2=1 –\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.......... ∞ =\frac{1}{1.2}+\frac{1}{3.4}-\frac{1}{5.6}+..........

 

Note: loge(1 + x) is defined for = 1.

 

Examples

Now let’s consider some examples on exponential and logarithmic series.

Example 1: Find the value of 1+ \frac{5}{1!}+\frac{5^2}{2!}+\frac{5^3}{3!}+\frac{5^4}{4!}+................∞ .

Since,  e^x = 1 + \frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+................+\frac{x^r}{r!}+.......∞.

Hence, put x = 5 in above expression, we have

e^5 = 1 + \frac{5}{1!}+\frac{5^2}{2!}+\frac{5^3}{3!}+\frac{5^4}{4!}+................

 

Example 2: Find the value of 1 – \frac{(2.5)}{1!}+\frac{(2.5)^{2}}{2!}-\frac{(2.5)^{3}}{3!}+\frac{(2.5)^{4}}{4!}-................ ∞

Since, e^{-x} = 1 – \frac{x}{1!}+\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}+..................... ∞

Hence, put x = 2.5 in above expression, we have

e^{(-2.5)} = e^{(-\frac{5}{2})} = 1 – \frac{(2.5)}{1!}+\frac{(2.5)^{2}}{2!}-\frac{(2.5)^{3}}{3!}+\frac{(2.5)^{4}}{4!}-................

 

Example 3: Find the value of \frac{2}{1!}+\frac{4}{3!}+\frac{6}{5!}+\frac{8}{7!}+............∞ .

\frac{2}{1!}+\frac{4}{3!}+\frac{6}{5!}+\frac{8}{7!}+............∞ = \frac{(1+1)}{1!}+\frac{(1+3)}{3!}+\frac{(1+5)}{5!}+\frac{(1+7)}{7!}+............ ∞

=

=\frac{e-e^{-1}}{2}+\frac{e+e^{-1}}{2}=e  

 

Example 4: Find the value of (0.5) – \frac{(0.5)^2}{2}+\frac{(0.5)^3}{2}\frac{(0.5)^4}{4}+……….∞

Since, log_{e}(1+x) = x – \frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+..........

Hence, put = 0.5 we have

log_{e}(1+0.5) = (0.5) – \frac{(0.5)^2}{2}+\frac{(0.5)^3}{3}-\frac{(0.5)^4}{4}+..........

log\left ( 1+\frac{1}{2} \right ) = log\left (\frac{3}{2} \right ) = (0.5) – \frac{(0.5)^2}{2}+\frac{(0.5)^3}{3}-\frac{(0.5)^4}{4}+..........

 

Example 5: Find the value of \frac{1}{3}+\frac{1}{2.3^2}+\frac{1}{3.3^3}+\frac{1}{4.3^4}+.......∞.

Since, log_{e}(1-x) = -x – \frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-.........

log_{e}(1-x) = x + \frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+......... ∞

Hence, put x= \frac{1}{3} we have

 

Check Point

  1. Find the value of 1+ \frac{3}{1!}++ \frac{3^2}{2!}+ \frac{3^3}{3!}+ \frac{3^4}{4!}+...............
  2. Find the value of 1+ \frac{(0.5)}{1!}+ \frac{(0.5)^2}{2!}+ \frac{(0.5)^3}{3!}+ \frac{(0.5)^4}{4!}+...............
  3. Find the value of \frac{4}{1!}+\frac{4^3}{3!}+\frac{4^5}{5!}+............. ∞
  4. Find the value of  -(0.5)-\frac{(0.5)^2}{2}-\frac{(0.5)^3}{3}-\frac{(0.5)^4}{4}-............
  5. Find the value of \frac{1}{n}-\frac{1}{2n^2}+\frac{1}{3n^3}-\frac{1}{4n^4}+............ ∞

Answer Key

Webinar : Core Parenting Skills for Healthy Brain Development
days
0
hours
0
minutes
0
seconds
0
Friday, April 19th at 7PM (Eastern Time)
Free Webinar
Candy Chan
CEO of Hoppity Learning Stanford Graduate
Webinar : Core Parenting Skills for Healthy Brain Development
Friday, April 19th at 7PM (Eastern Time)
Free Webinar