Binomial Theorem

Binomial theorem is a theorem developed for calculating any power of any binomial without actually multiplying at length. General binomial expansion is denoted by

 

(a+b)=nc0an +nc1an-1b+nc2an-2b2+…………………..+ncn-1abn-1+ncnbn  where n>=0 and

Example (x+y)3=3c0x3+3c1x2y+3c2xy2+3c2y3

Example – Expand (p+1)3

(p+1)3=3c0*p3+3c1*p2*1+3c2*p*12+3c2*13

=  p3+3p2+3p+1

Some Facts about Binomial Theorem

  • General term for an expansion (a+b)n is Tr+1 =ncran-rbis , where 0 <= r<= n.
  • Number of terms in expansion will be n + 1.

   Check point

Expand the following binomials –

1) (a+b)3

2) (s+3)3

3) (y2+1)4

4) (3+x)4

5) (z+2)6

     Answer Key

1) a3+3a2b+3b2a+b3

2)  s3+9s2+27s+27

3)y8+4y6+6y4+4y2+1

4)81+108x+54x2+12x3+x4

5)z6+12z5+60z4+160z3+240z2+192z+64

©2020 eTutorWorld           Terms of use            Privacy Policy            Site by Little Red Bird          

©2020 eTutorWorld
Terms of use
Privacy Policy
Site by Little Red Bird

SPECIAL HALLOWEEN DISCOUNT

 

♦ Coupon HALO10 for a 10% Discount on all Tutoring Packs

♦ Coupon TEST20 for a 20% Discount on all SCAT, SSAT, CogAT & Enrichment Online Practice Packs

You have Successfully Subscribed!